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Abstract The article presents a method to perform an analysis of correspon-
dence between sets of points in three-dimensional euclidean space E3.
Application-speci�c spatial data structures like the minimum (euclidean)
spanning tree and several kinds of histograms assessing di�erent trans-
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formations combined with quantities characterizing geometrical and topo-
logical qualities of point clusters are used to compute scores for point-to-
point identi�cation. These ratings are accumulated in a so-called match
matrix, which is �nally employed to extract a 1:1 match. The method is
used to track individual 
uorescent spots (synapses) in a volume of tis-
sue which undergoes uneven spatial distortion (swelling and shrinkage).
This enables the creation and analysis of cell property-pro�les.

Introduction

In several areas of research a study of the internal processes of a
system is only possible if objects of one state can be matched to objects of
another state. The tracking of identical objects is necessary to determine
their properties and their change in the course of time and/or treatment.
In biology and especially physiology often problems arise, where a

matching algorithm (correspondence analysis) becomes essential. The
tracking of cells or organisms that lack deterministic dynamics in terms
of movement in a cellular sample is only one problem category out of a
variety of similar applications [4].
The work presented in this paper originated in a biomedical appli-

cation, i.e. the tracking of synaptical structures in taste buds of rats
or frogs. The objects (
uorescent synapses) of one set of 3-D data
are matched to those of a preceding set. Thus individual spots can
be tracked despite uneven swelling and shrinkage of the tissue. This
allows the eventual construction of intensity-time pro�les of individual
synapses.

1. NOTATIONS

In the following paragraphs the sets S (source) and D (destination)
represent two sets of points in three-dimensional euclidean space E3

formalizing object positions in the origin and destination state. S =
fs1; :::; sng, D = fd1; :::; dmg. The points in the sets are associated with
intensities or rather weights for generality. They are denoted as I(s),
s 2 S, as well as I(d), d 2 D. The corresponding position vectors are

written as ~s and ~d.
There are two di�erent views on sets used in this context. Ordered

sets contain implicit information about the topology of the addressed
points and therefore de�ne series of edges. In an unordered set, points
are not connected in any speci�c way. Subsets of S are denoted by
P = (p1; :::; pk) � S in the ordered case and by P = fp1; :::; pkg � S in
the unordered case. Subsets of D are strictly named with Q � D having
cardinality l = jQj.



Correspondence Analysis 3

2. BASICS AND DEFINITIONS

In order to formulate the matching algorithm in a single paragraph,
the basics must be considered in advance. The following sections intro-
duce the di�erent components of the correspondence analysis.

2.1. EUCLIDEAN MINIMUM SPANNING

TREE

De�nition 1. An undirected graph � consists of a set of nodes
(vertices) V� and a set of undirected edges E� � V� � V�.

Remark 1. Since a graph � is undirected, fp1; p2g and fp2; p1g,
p1; p2 2 V�, represent the same edge.

De�nition 2. Let M denote an unordered set of points in the
three-dimensional euclidean space E3. A graph � consisting of nodes
that represent the points of the set V� =M with the properties

� is connected (from each node p 2 V� every further node q 2 V�
is reachable by a sequence of edges in E�).

The sum of the euclidean lengths of all edges of �

L(�) :=
X

fp;qg2E�

jj~q � ~pjj2 (1.1)

is minimized.

is called euclidean minimum spanning tree.

Detailed de�nitions and additional information can be found in spe-
cial graph theory literature. In this context the minimum spanning tree
(MST) is used to apply a structure to unordered points in E3. It has
useful properties like connecting clusters of points that potentially re-
occur in the second dataset, and it is unambiguous if all point-to-point
distances are di�erent in pairs. Moreover, it reduces edge count com-
plexity to O(n) and O(m) in the two denoted sets, instead of O(n2) and
O(m2) for the case that all points are connected to each other (fully
connected set). Unfortunately the minimum euclidean spanning trees of
S and D can di�er because of small variations in the point sets (even if
S and D have equal cardinality). Therefore one should add a so-called
closure to the MST �D.

De�nition 3. Let �M be the minimum euclidean spanning tree of
a set M � E3, 2 � s 2 N . An ordered subset P = (p1; :::; ps) �M with
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fp1; p2g; :::; fps�1; psg 2 E�M is called sequence or s-sequence in �M .
We de�ne ��M

s as the collection of all s-sequences of �M . Moreover we
represent sets of speci�c sequences (t; s1; :::; st 2 N) by

��M
s1;:::;st

:=
t[

i=1

��M
si

: (1.2)

De�nition 4. Let P � M denote a c-sequence (3 � c 2 N) of a
given graph �M . A c-closure of P is an edge fp1; pcg connecting the �rst
and the last point of the the sequence P . For a collection of sequences
��M
s1;:::;st

, we de�ne �(��M
s1;:::;st

) as set of closure edges of all sequences of

��M
s1;:::;st

.

Remark 2. Note that a c-closure always bridges c� 2 points.

In the following we address two sets of sequences: ��S
2;:::;smax (denoted

by �S) and ��D
0

2;:::;smax (denoted by �D), where �D
0 is �D with extended

edge set E0
�D

= E�D [ �(��D
3;:::;cmax). The constants smax and cmax

restrict the extracted sequence lengths. They are user-de�ned and we
will have a closer look at them in terms of complexity.
To ease comprehensibility we rephrase our problem: The task is match-

ing two sets S and D of objects that are represented by positions in
euclidean space E3. The cardinality of S and D may be unequal, due to
objects disappearing or getting out of scope from one state to the other.
We try to apply a structure to each set by constructing the MSTs �S
and �D. In general the graphs di�er, since the objects where exposed
to various modi�cations. To compensate this di�erence, we extend �D
by adding further edges from closures of speci�ed sequences from it
and obtain �0

D. At last, to accomplish a comparisson between the sets,
we extract sequences of certain lengths from �S and �0

D, subsequently
denoted by �S and �D.

Remark 3. Note that the extended graph �0
D is not full�lling mini-

mum spanning tree properties anymore.

2.2. CHARACTERISTIC VALUES

In order to compare unordered sets of points, it is necessary to de�ne
criteria or quantities to describe an identity score or a similarity error,
respectively. This paragraph introduces and discusses the characteristic
values proposed.
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Figure 1 Minimum euclidean spanning tree in three-dimensional space. Right: the
3-closure supplements the graph with further edges.

2.2.1 Accounting for Relative Position. To account for the
relative position of the sets elements the centroid ~c(P ) is computed in
advance and the euclidean distances from it are summed up.

~c(P ) =
1

jP j

X
p2P

~p (1.3)

cv1(P ) =
1

jP j

X
p2P

jj~c(P )� ~pjj2 (1.4)

This characteristic value is linear with respect to scaling: cv1(�P ) =
�cv1(P ), � 2 R+

0
, and invariant under rigid motions A: cv1(AP ) =

cv1(P ).

2.2.2 Accounting for Edge Length. Due to the missing
order we must assume that the set is fully connected. This means each
pair of points de�nes an edge.

cv2(P ) =
1�
jP j
2

� X
pi;pj2P

i<j

jj~pj � ~pijj2 (1.5)

This second characteristic value has the same mathematical properties
as cv1.

2.2.3 Accounting for Object Intensity. As long as the
intensity is not the interesting value to be monitored by the analysis, it
is possible to use it in a third characterizing quantity. For example a
simple averaging can be done.
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cv3(P ) =
1

jP j

X
p2P

I(p) (1.6)

The properties of this value depend on the qualities of the value I(p)
of p 2 P .

Remark 4. The normalizing factors are meant to obtain values of
the same order of magnitude. We assume the object intensities being
adapted to these requirements.

2.2.4 Combining Characteristic Values. At last, these
characteristic values are combined to an already mentioned similarity
error of two sets P and Q.

"(P;Q) =
3X

i=1

cijcvi(Q)� cvi(P )j (1.7)

The mathematical quality of the error depends on the properties of
the quantities used. Assuming that only the �rst two characteristic
values de�ned in the previous sections are combined, the error also shows
linearity and invariation under rigid motions, such as translations and
rotations. The constants ci rate the respective values. The similarity
error can be used to de�ne an identity score

1

1 + "(P;Q)
: (1.8)

As a result the formula yields 1 for equality of the sets and converges
to 0 with more and more dissimilar sets P and Q.

2.3. USING HISTOGRAMS

To obtain structural, geometric and topological information from S

and D, two di�erent histograms are built upon series of edges from
�S and the supplemented �D. The matching algorithm can use the
data from the histograms to compose the scores that will be described
subsequently. To be able to compare and to use the histograms in the
scoring procedure, they will be normalized denoting Ĥ.

2.3.1 Translation Histogram. For the generation of the his-
tograms the underlying space (three-dimensional space in case of trans-
lation in E3) is divided into cells that accumulate scores for a respective
group of translations. The score for the correspondence between two
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Figure 2 Translation histogram of a spiral dataset (left) and a scaling histogram
with strongly developed rating for � = 1 in its center (right).

sequences P and Q, obtained from the combination of the characteris-
tic values in "(P;Q), is added as described by the following formula.

H
(r+1)
translate(~v) = H

(r)
translate(~v) +

1

1 + "(P;Q)
(1.9)

The vector ~v := ~c(Q) � ~c(P ) de�nes the cell to which the score is
added. Thus, in case of D being created by simple translation of S,
Htranslate(~c(D)� ~c(S)) will receive the highest score.

2.3.2 Scaling Histogram. In analogy to the translation his-
togram the scores are added to the scaling histogram. The underlying
space is one-dimensional in this case and divided into intervals.

H
(r+1)
scale (�) = H

(r)
scale(�) +

1

1 + "(P;Q)
(1.10)

The formula determines the scoring procedure for each pair of sets
P and Q. The interval identifying factor � 2 R+

0
is computed by � :=

cv1(Q)
cv1(P )

= cv2(Q)
cv2(P )

, for cv1(P ) 6= 0 and cv2(P ) 6= 0.

2.4. ACCUMULATION OF SCORES IN THE

MATCH MATRIX

In the following paragraphs the composed votes are accumulated in a
structure called match matrix or vote scheme. It can be seen as a special
histogram structure and is therefore expressed in the same way as the
translation and scaling histograms discussed above. The n rows of the
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Figure 3 Example of a correspondence analysis vote scheme (left) and a result of
matching multiple datasets (right). The blue (dull) spots identify the points from the
source and the yellow (brighter) ones those of the destination set.

matrix Hmatch are associated with the points of the source set S and its
m columns can be identi�ed with the objects of the destination set D.
This means, after the scoring procedure with kernel

H
(r+1)
match(i; j) = H

(r)
match(i; j) + v(i; j) (1.11)

where v(i; j) is a supplementing score, Hmatch(i; j) contains a rating for
the correspondence of si 2 S to dj 2 D.

2.5. PROCESSING THE MATCH MATRIX

After all scores are summed up in the match matrix, the matrix can
be processed in a speci�c, application-dependent way.
A �rst approach to extract a 1:1 match starts an iterated procedure

that selects the maximum value in the matrix, e.g. Hmatch(i; j); i 2
f1; :::; ng and j 2 f1; :::;mg, marks dj as a matching point to si and
clears the according row and column of Hmatch in order to avoid further
matchings.
This apparent method is somehow greedy, because it always selects

the highest entry, and we must be aware of the fact that it does not
necessarily realize the optimum 1:1 match, which is de�ned by the max-
imized sum of the chosen entries of Hmatch. However, our results have
shown that this method provides a fast and eÆcient technique.
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2.6. SCORING OF SUBSET

CORRESPONDENCE

With data from the histogram structure and the geometry, topology
and attribute characterizing similarity error "(P;Q), a vote for the corre-
spondence of two unordered sets P and Q can be computed. We propose
the following formula.

v(P;Q) =
c4Ĥtranslate + c5Ĥscale + c6

(c4 + c5 + c6) + "(P;Q)
(1.12)

The constants c4 and c5 are weights rating the information from the
translation and scaling histograms. The third factor is computed by
c6 = 1 , (c4 = c5 = 0) or it is set to zero if this condition is not
met. Thus it ensures a vote unequal to zero if the histogram data is not
considered.
Going with this formula, we are now able to rate the similarity of

two sets, but are still not aware of point-to-point scores. There are sev-
eral possibilities to accomplish this submatching task. The next section
introduces an eÆcient and very convincing approach.

2.7. SCORING OF POINT

CORRESPONDENCE

For the rating of point-to-point correspondence, ordered sets of points
are taken into account. These implicitly de�ne series of edges having a
cardinality of at least 2. Despite the ordered set view, the rating from
equation (1.12) is computed in advance. Comparing sets of cardinality
2, the result of

vP;Q(i; j) = v(P;Q) (1.13)

is used as a vote for point-to-point scoring for si 2 P � S to dj 2 Q � D

and added to the match matrix as described in 2.4.
For larger sets of cardinality jP j = jQj > 2, a temporary copy of the

current match matrix is used. After the completion of edge matching
the match matrix already contains valuable data that represents a full,
but possibly unsecure match. This means the vote scheme Htemporary =
Hmatch is used to perfom the submatch task.

vP;Q(i; j) = v(P;Q)Ĥtemporary(i; j) (1.14)

Moreover, the Htemporary matrix can be updated after each processing
of a determined subset size. This will result in more and more precise
submatches.
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3. MATCHING ALGORITHM

This section combines the structures and methods summarized in
paragraph 2. The introduced algorithm has been implemented in a
software package which enables the analysis of datasets from statisti-
cal experiments in biological and neurophysiological applications [3], [7],
[8].

3.1. PREPROCESSING THE INPUT SETS

The �rst step of the matching procedure is the preprocessing of the
two input sets S and D.

3.1.1 Matching the Centroid. The two sets might have been
exposed to a global transformation, and therefore the centroids of the
whole sets, computed by ~c(S) and ~c(D), are brought together by moving
all objects of D by the vector ~v = ~c(D)� ~c(S).
This �rst preprocessing step will of course a�ect the translation his-

togram. The ratings should now be centered in Htranslate.

3.1.2 Extracting Ordered Sets. For both sets the minimum
spanning trees �S and �D are built. To reduce single-point importance
the closures of �D are computed. The extraction of ordered subsets is
done by simply extracting sequences of speci�ed lengths from the graphs.
The structural and geometric information of �S and �0

D is inherited
implicitly to the sequences. The sets of sequences of �S are denoted by
�S and those of �0

D by �D.

3.1.3 Generating Histograms. The creation of the his-
tograms can be seen as prematching all sequences. All translations and
scalings in a pair (P;Q), P 2 �S , Q 2 �D, jP j = jQj of two sequences
receive a score in the appropriate structure. This means that the his-
tograms are supplemented by the rating procedure in equations (1.9) and
(1.10) in paragraph 2.3. After this, one has the opportunity to ask for
probabilites of translations and scalings by a certain vector or a speci�c
scaling factor. This information was not accessible a priori.

3.2. MATCHING THE INPUT SETS

After preprocessing is completed, we have translation and scaling his-
tograms as well as the extracted sequences at our disposal. With this
information we are able to compute a score for each pair of sequences
from �S and �D with equation (1.12) and add the rating to the match
matrix as proposed in paragraph 2.7. As a last step, the processing of
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Figure 4 Representation of match results without destination objects (left). Single
object intensity pro�le (right).

the match matrix is performed. An application-dependent method of
the extraction of a 1:1 match was described in paragraph 2.5.

3.3. COMPLEXITY

In the implemented application the user needs to adjust the param-
eters according to the demands of the current task. Two very useful
values are given by the max. sequence length smax and the max. closure
length cmax variables. The �rst de�nes the maximum length of sequences
that are extracted from �S and �0

D, and the second limits the closures
that are used to supplement the graph of �D.
Regarding complexity, the number of sequences strongly depends on

these two values. In the paragraphs below they are denoted by s and
c. At �rst we will discuss the simple comparison of edges from the pure
minimum spanning trees (no supplement by closures). For the comple-
tion by closures, we found two approximative but expressive estimates.

3.3.1 Counting Sequences in the Minimum Spanning Trees.

The minimum spanning tree of a set with size n cannot di�er in the
number of edges (2-sequences), but in counts of s-sequences, where n�
s > 2. We found the estimate for a set M

(n� s+ 1) � Es(M) � Æmax
s (n� s+ 1); (1.15)

where Es(M) is the number of s-sequences in �S, and Æmax
s = 1

2(n� s)
is a worst case factor. Further we conclude

Es(M) � Æs(n� s+ 1); (1.16)
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with Æs being a minimum spanning tree dependent value limited by 1 �
Æs � Æmax

s .
Comparing the resulting sequence sets resulting from the input sets S

and D, we obtain �(Æs(S)(n�s+1)Æs(D)(m�s+1)), and 
(nms+s2),
O(n2m2s2 + s4), respectively. Using constant input sets and simply
varying s, we establish 
(s2) and O(s4).

3.3.2 E�ect of Closures on Complexity. As mentioned
before, we will limit the analysis to two estimates. The �rst will be
made based on a c-closure of �D. An observation of the closure ef-
fect establishes the following fact: 'every c-closure yields a supplement
of at least one further s-sequences in s respective nodes', and with the
knowledge from the previous section (Ec(D) � m � c + 1), we obtain
E0
c(D) � Ec(D) + s(m� c+1). The estimate for the lower bounds then

reads


(Ec(S)E
0
c(D)) = 
(nms+ s2c): (1.17)

This shows a mutual dependency on s and c that causes a higher
complexity for the comparison of the sets.
The second case aims at an estimate for the upper complexity bound,

which proves to be independent of c. We need to be aware of the fact
that the worst case setting, the fully connected set, can occur with only
a single closure. Due to this unfortunate e�ect we have to consider a
complexity of

O(

�
n� s+ 1

2

��
k!

(k �m)!

�
) = O(n2ms + s2ms): (1.18)

In this context a confrontation of the determined bounds with the
complexity of the comparison of two worst case sets again justi�es the
use of the minimum spanning tree (O(jM j3) for an unpreprocessed set
M). To match the fully connected sets S and D by using s-sequences,
we have to deal with

�(nsms) (1.19)

score computations.

4. CONCLUSION AND FUTURE WORK

The presented method can be utilized to analyse two sets of points
in the three-dimensional euclidean space in order to �nd a satisfying
match after an exposure to various modi�cations. For our application,
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the matching of corresponding synapses, we found that the introduced
method provides high accuracy, which is manifested in the rigid move-
ment of clusters that were identi�ed by the geometric analysis. The tests
refering to the histograms, showed very encouraging results and proved
their indispensability. The future work will focus on considering an ex-
traction of clusters from the histograms in order to reduce the existing
noise caused by de�nitely uncorresponding objects.
In the previously mentioned application, we implemented another op-

tion supplementing the structure of the minimum spanning tree. The
proposed method handles some sort of a hierarchical extension. A clas-
si�cation on aspects of dynamics or reliability is used to create ranking
sets that are matched with respect to those of the destination set. How-
ever, this is only possible if the classi�cation supports the matching.
This means that objects of lowest dynamics in S will be matched with
high probability to objects of low dynamics in D and so on. More de-
tails on the implemented algorithms, results, a discussion and further
comments illustrating the methods used can be found in [3].
This work was supported by the Deutsche Forschungsgemeinschaft,

SFB 530/B2.
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